Examples¶
Some quick examples of how one might implement pre-built models from Nue.
Linear Regression Example¶
import numpy as np
import pandas as pd
from nue import linreg
data = pd.read_csv('examples/data/linear_regression_dataset2.csv')
data = np.array(data)
''' Pre processing data'''
X_train = data[:, 0:4].T # (3, 500)
Y_train = data[:, 4].T.reshape(-1, 2000)
X_train_scaled = (X_train - np.min(X_train, axis=0)) / (np.max(X_train, axis=0) - np.min(X_train, axis=0))
''' Running model'''
lr = linreg.LinearRegression(X_train, Y_train, 4, .001, 10000)
w, b = lr.model()
Logistic Regression Example¶
import numpy as np
import pandas as pd
from nue import logreg as lr
''' Pre processing data'''
data = pd.read_csv('examples/data/randomtrain.csv')
data = np.array(data)
X_train = data[:, :2].T
Y_train = data[:, 2].T.reshape(-1, 200)
print(X_train.shape)
print(Y_train.shape)
''' Running model '''
model = lr.LogisticRegression(X_train, Y_train, 2, .1, 50000)
model.model()
Neural Network Example for MNIST¶
import numpy as np
import pandas as pd
from nue import nn
''' Pre-processing data '''
data = pd.read_csv('examples/data/mnist_train.csv')
data = np.array(data) # 60000, 785
Y_train = data[:, 0].T.reshape(1, -1)# 1, 60000
X_train = data[:, 1:786].T / 255 # 784, 60000
''' Running model '''
model = nn.NN(X_train, Y_train, 784, 10, 32, .1, 1000)
model.model()